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ensity functional theory can be based on the constrained search method [M. Levy, Proc.
6062 (1979)]. From the Gibbs inequality one first derives a variational principle for
the grand potential as a functional of a trial many-body distribution. This functional is minimized in t

Lages.

The first step consists of a constrained search of all many-body distributions that generate a given one-body
density. The result can be split into internal and external contributions to the total grand potential. In contrast to
the original approach by Mermin and Evans, here the intrinsic Helmholtz free-energy functional is defined by an
explicit expression that does not refer to an external potential in order to generate the given Unmdy density.
The second step consists of minimizing with respect to the one-body density. We show that this framework can
be applied in a straightforward way to the canonical ensemble.
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L INTRODUCEIION

The variational principle of density functional theory
(DFT) was originally formulated for ground-state properties
of quantum systems by Hohenberg and Kohn in 1964 [1].
The extension to nonzero temperatures was performed by
Mermin in the following year [2], here still formulated for
quantum systems. The application to the statistical mechanics
of classical systems, i.e., the development of classical DFT,
was initiated about a decade later through the work of Ebner,
Saam, and Stroud [3-5]. The generality of the framework was
fully realized by Evans [6]. His 1979 article continues to be
the standard reference on the subject; there are more recent
review [7-9] and textbook [10] presentations.

The Hohenberg-Kohn theorem applies to one-particle
density distributions that correspond to a particular external
(one-body) potential v in the Hamiltonian, in which the kinetic
and internal int tion are those of the true system [1,2].
One refers to uﬂcscmability of the one-particle density,
i.e., the condition that a one-particle density is generated by
some external potential v. However, it was realized, already in
the original Hohenberg-Kohn paper, that v-representability is
not guaranteed for an arbitrarily chosen density p [1,11,12].
One argues that this does not pose any problems in the
practical applications of DFT to quantum systems [13]. In the
development of the theory, it turned out that there indemxisl
non-v-representable densities, i.e., one-body densities that are
not associated to any ground-state wave function [14]. The
original Hohenberg-Kohn theorem does not apply to these.

In 1979, Levy introduced an alternative foundation of DFT
for quantum systems, based on a constrained, two-stage search
[11]. Here a weaker condition, known as N-representability, is
used, where the density distribution may be directly obtained
from some antisymmetric N-body wave function, although
an external potential that generates this wave function need
not exist [11,14,15]. One defines exchange-correlation
functional that demands searching all wave functions that
return the fixed (trial) one-body density. The latter need not
be v-representable. Subsequently, a method similar to Levy’s
was proposed by Lieb [16], called the generalized Legendre
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transform [12]. Instead of searching all wave functions,
the functional searches all possible external potentials that
correspond to a fixed density. Kohn adopted the constrained
search for his Nobel lecture [13], and it is viewed as an
important theoretical contribution to the foundation of DFT
for electronic structure. Practical applications of constrained
search functionals are of ongoing research interest; see e.g.,
Refs. [12,17]. Levy gives a brief historic account of the
development of his ideas in Ref. [18].

Given the significance of Levy’s and Lieb’s methods for
electronic structure, it is somewhat surprising that there are
very few studies that point to the use of these methods in
classical systems. One example is the work by Weeks [19],
where v-representability of the one-body density in some finite
region of space is investigated through the Gibbs inequality.
Although Weeks cites Levy’s original paper [11] and makes a
remark that his formulation is in spirit similar to that of Levy,
it seems that his method is related more to Lieb’s generalized
Legendre transform method. Earlier work has been carried out
in order to investigate the existence of an external potential
1s associated to a given equilibrium one-body density [20]. ¥
concluded that there is such an external potential that produces
any given density for any (classical) system without hard-core
interaction. Although one might guess from general argumefiy)
that the constrained search can be applied to classical DFT, to
the best of our knowledge, this procedure has not been spelled
out explicitly in the literature.

In the present article we show how to formulate the
variational principle of classical DFT based on Levy’s con-
strained search method. ThEl alternative can provide further
insights into the foundation of classical DFT. In particular the
intrinsic free-energy functional is defined here without implicit
reference to an external potential v. A more relaxed condition
for p, similar to that of N-representability, is imposed. Here,
the one-body density is only required to be obtained from an
arbitrarily chosen many-body probability distribution f. We
refer to this condition as f-representability of a given p. While
distinguishing between the different types of representability
in practical DFT calculations seems unnecessary, we find
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the discrimination to be very useful for conceptual purposes
and hence point out throughout the manuscript which of the
conventions is followed in the reasoning. We also show that
Levy’s method can be applied in a straightforward way to t
canonical ensemble. There is considerable current interest in
theoretical description of the behavior of small systems,
where the grand and the canonical ensembles are inequivalent
in general, and the latter might model certain (experimen-
tal) realizations of strongly confined systems more closely.
Several relalivmrecem contributions address the problem
of formulating DFT in the canonical ensemble [21-26]. The
authors of these papers consider the important problem of
how to obtain DFT approximations that make computations
in the canonical ensemble feasible. Our present article has a
much lower goal: We are concerned only with formulating the
variational primle in an alternative way.
This article 1s organized as follows. We start by defining the
grand potential as a functional of the many-body probability
distribution in Sec. II. This ip necessary step and our
presentation follows [6-8,10]. In Sec. III we give a la:f
overview of the standard proof of DFT, expressitZithe free
energy as a functional of the one-body density based on a
one-to-one correspondence between the one-body density and
the external potential. The full derivation is widely known and
can be found in numerous references [6-8,10,27]. We proceed,
in Sec. IV, by formulating the intrinsic free-energy functional
via the constrained search method; our presentation is similar
to Levy’s original work [11]. Our central result is the definition
(22) of the intrinsic free-energy functional, without reference
to an external potential. We summarize the essence of Levy’s
argument as a double minimization [18] in Sec. V. In Sec. VI
we apply this to the canonical ensemble and we conclude in
Sec. VIL

IIE;RAND POTENTIAL FUNCTIONAL
OF THE MANY-BODY DISTRIBUTION

In the grand canonical ensemble of a system of classical
particles, the equilibrium probability distribution for N par-
ticles at temperature T is assumed to exist and to be given
by

fo=E " exp[-B(Hy — uN)], (1)
12
where Hy is the Hamiltonian of N particles, p 1s the chemical
potential, and § = 1/(ksT)E§ith ks being the Boltzmann
constant. The normalization constant is the grand canonical
partition sum

2 = Tryexp[—B(Hy — uN)]. (2)

where Tr| represents the classical trace, i.e., the sum over total
particle number and integral over all degrees of freedom

o 1
Try=3 jfdr. mderdpl g, &

h3V NI
N=0

where h is the Planck constant, r;.....ry are the position
coordinates, and p;.....py are the momenta of particles
I.....N.
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One introduces the grand potential as a functional of the
many-body probability distribution,

QLf1 = Traf(Hy — uN + " In f), @
where f is a variable trial probability distribution that satisfies
the normalization condition

T f = 1. (5
Note that f as an argument of functional (4) can be quite
general and need not be linked to an external potential at this
stage. Inserting the equilibrium probability distribution (1) into
(4) one obtains
Q[ fol = Trei fo(Hy — uN +ﬁ In fo)
Trei fo(Hy — pN + 7' [—In E — B(Hy — uN)])
=—f"'"InE=Qp (6)

where €2, is the equilibrium grand potential. An important
property of functional (4) is that it satisfies the variational
principle

QLf1 = Qlfol. [ # fo. )]
which may be proven using the Gibbs-Bogoliubov relation as
follows. First, from Eqs. (1) and (6), [ f] of Eq. (4) can be
written as

: : - o f
QLf1=Qlfol + B 'Traf In (T' : (8)
Jo
According to the Gibbs inequality [6,10],

p(®) (b o

: f C,
Trei f In (—. = Tral(f — fo). (10)
Jo
Since f and fy are normalized, i.e., satisfy (5), the right-hand
side of the inequality above vanishes and

and hence

B 'Try f1n (i) = 0. (11)

fo

Thus the second on the right-hand side of (8) is positive,

and the inequality (7) follows.

For classical particles the Hamiltonian may be restricted to

the form
N [}1
Hy =ZTm+U(r],,,

N
SEN) Y ), (12)
i=1 i=1
where the first term is the total kinetic energy, with the
squared momentum pil = pi - pi of the i-th picle, U is the
interatomic potential between the particles, v 1s an (arbitrary)
external one-body potential, and m is the particle mass. The
equilibrium one-body density at position r is given as a
configurational average

po(r) = Trey fop(r), (13)

where the density operator for N particles is defined as

N
ﬁ) =) 8r—r). (14)
i=1
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The functional form (4) was originally introduced by
Mermin [2] for (ﬁlﬂ-lempemlure) quantum systems, where
the grand potential 1s a functional of a (trial) density matrix.
The variational principle (7) will be used in Secs. III and IV
below, ‘e we present two alternative derivations of the
intrinsic free energy as a functional of the one-body density.

1. MERMIN-EVANS DERIVATION
OF THE FREE-ENERGYX FUNCTIONAL

Evans gave a formal proof that the intrinsic free energy of
a system of classical particles is a functional of the one-body
density [7]. Here we briefly lay out his cha@#Z®f arguments. The
many-body distribution f, as given in (1) 1s a functional of the
external potential v through Eq. (12), and therefore gy is a
functional of v via (13). This, in principle, requires solution of
the many-body probler the dependence is in accordance
with physical intuition, 1.e., it is the action of v that generates
the shape of the density profile p;.

However, the more useful result that can be deduced [7],
is that once the interatomic interaction potential U is given,
Jfo 1s a functional of pg. The proof of s statement rests on
reductio ad absurdum [6,7,10], where for a given interaction
potential U, v is uniquely determined by py. The resultant v
then determines f, via (1) and (12). Hence, f; is a functional
of py. E
Animportant consequence in this reasoning is that for given
interaction potential U,

N 2

. P - .

Flpl = Trafo (Z 2t U+ In ,fu) (15)
i=1

i1s a unique functional of the (trial) one-body density p.

Here, the dependence of fy on the external potential, v, is

now implicit only through the one-body density, p. We will

comment on this sequence of dependencies in the conclusions,

after having laid out Levy’s alternative method to deﬁlm

a free-energy functional in Sec. I'V. Furthermore, using a
Legendre transform, the grand potential functional is obtained
for a given external potential as

Qu[pl = Flpl +fdr[1.'(r) — plp(r). (16)

The functional €2,[p] returns its minimum value if p = oy,
1.e., if the trial density is the true equilibrium one-body density
of the system under the influence of v. The value is the grand
potential €. The existence of the milﬂmm value of Q,[p]
may be proven by considering another equilibrium density p’
associated with a probability distribution f* of unit trace (5),
such that

Qf = E,f"(h’m —uN+ B 'In f)
— Fl1+ fdr[v(r) _ WP

=Q[p'l. (a7
where
N 1'}1
FIp1 = Traf’ (Z S+ U+ n f) Cas)
i=1 "
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However, it is known from Eq. (7) that Q[ f'] > Q[ f]. for
f' # fo, thus it follows that

Q.00 > Qulpol. (19)

In other words, the a'recl equilibrium one-body density,
pPo. minimizes £2,[p] over all density functions that can be
associated with a potential v. 48

This important result may be stated as a functional
derivative

sulpl| _ 0
3p(®) |, -

and

Qylpo]l = Q. (21)

ml'o conclude, the formal argument for the definition (15)
of the intrinsic fa-cncrgy functional, F[p], is based on
v-representability of the one-body density. A v-representable
p 1s one that is associated with a probability distribution, f, of
the given Hamiltonian Hy with external potential v [11,13].
This condition was originally introduced for quantum systems
and 1s implicit in the current approach. It is used to prove the
chain of dependency outlined above (15) and confirmed for a
large class of (classical) systems in Ref. [20].

IV. FREE-ENERGY FUNCTIONAL@A LEVY’'S
CONSTRAINED SEARCH METHOD

Here we show how one may alternatively define a free-
energy functional via Levy’s method. This is based on the
weaker condition of f-representability, where trial density
fields p ne@ol necessarily be associated with some external
potential. We define the intrinsic Helmholtz free-energy
functional as

,
I

y
Filp] = min [Trdf (; St U+p fﬂ .o@

Iy

[

where the minimization searches all probability distributions
ft re normalized according to (5), and that yield the fixed
trial one-body density p via

p(r) = Try fA(r). (23)

The notation f — p in (22) indicates the relationship (23).
Note that (1) in general there will be many different forms of
f that yield the same p, and (i1) no further conditions on f are
imposed, apart from its normalization. In particular, the form
of f need not be of Boltzmann-type containing the interaction
pOlelnll U (as was the case in Sec. III). Hence p need
only be f-representable, but not necessarily v-representable.
JFi[p] returns aninimum value by choosing the probability
distribution that minimizes the term in brackets in (22). Note
that the functional form os term is formally equivalent to
(15) and that it is a sum of contributions due to kinetic energy,
internal interaction energy U, and (negative) entropy kg f In f
multiplied by T.

The grand potential functional for a given external potential
is then

Q. lpl = Ferlpl + fdr[u(r) — p] p(r). (24)
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This functional possesses two important properties. (1) At the
equilibrium density it yields the equilibrium grand potential
2,[pol = 20, (25)

where py is given by (13) and €, by (6). This value also
constitutes the minimum such that

Q[p] = Q. (26)

In order to prove (25) and (26), we introduce additional
noll, Let fnqin be the probability distribution that satisfies
the right-hand side of Eq. (22). Then it follows that

N

Filp) = Trafl, (Z > “in ,f;:?-l.l) . en

and for the case of the equilibrium density,

St

N 2
. P - .
Filpol = Trg f25, (Z o +U+4"In fnf‘-l',l) . (28)
i=1 "

First, we proof the inequality (26). By its very definition
(24), the left-hand side of (26) may be rearranged into

f dr [u(x) = il p(x) + F.[p]

= fdr[v(r)—.u] p(r)

N 1
+Tl'cl fnqin (Z ! In fmm)

= Try fmm (H"\' —uN + '8 'In fnqm) (29)

But according to the inequality (7),

Try f2, (Hy — pN + 87" In Q. (30)

min mm)

Thus, combining (29) and (30), the inequality (26) is recov-
ered. In order to prove (25), it is obvious from (7) that

Tro ff (Hy — N + 7' In f25) = Q. (31)
or, recalling (6),
Tra fmm (H-"\r' —uN+ »8_] In fnlra,(iln)
= Tra fo(Hy — uN + 7' In fp). (32)

But fnﬂ"l'.l and f; generate the same one-body density gy, hence
from

fdr(u(r) — 1) po(r)

1', 1
+Tlcl fmm +U + ,8 In flmn)
= fdr[v(r) — 1l m(r)

N
+Tra fo (Z o “'In fu) : (33)

S
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we obtain

N 1
Try fmlln (Z “'In fn?m)

N 2
. Pi
z Trfo (Z o

i=1

“!n j'u) . (34)

However, by the very definition of fn'f‘-l',l,
inequality should also hold:

N 2
. Pi - .
Trg ,fllll:('llll (Z -)_m +U+ ,8 : In ,fn?iln)

the following

< Trafo (Z i +U+p"'In fu)‘ (35)

i=1

The above two inequalities hold simultaneously, if and only if
equality is attained,

N 2
Pi - .
Trel flﬁlu (Z E +U+B "In ,fn?iln)
i=1 "
N }3
B Tl'c[f(J (Z ,);” + U+ '8_] In f(]) . (36)

i=1

Inserting (28) into (36) yields

N 2

Filol = Trafo (Z . “In fu) .G

i=1

Furthermore, as
Qo = Tra fo( Hy — uN + B In fy)
- f dr [v(®) — ] polD)

N 2
. Pi
+Tra fo (Z m

“'In ,f;,), (38)

i=1
inserting (37) into (38) returns (25), which completes the
proof. Equation (37) implies that if p is v-representable, then
Filpl = Flpl. Moreover, f = fnf‘-l',l means that f, may be
obtained directly from gy even if v is unknown: Find the
probability distribution that yields pp and which minimizes
(22

Finally, the inequality (26) implies that the functional
derivative of the grand potential functional vanishes at equi-
librium,

8 [p]
8p(r)

For completeness we menllo.hdl it is convenient to split
Frlp] into two terms, viz. the ideal and cxes free-energy
functionals, Fi4[p] and Fe.[p]. respectively, such that

Fexelpl = Frlp]l — Fulpl. (40)

where the free energy of the ideal gas (with no interaction
potential ﬁsem, U = 0)is given by

(39)

Fialpl = g~ fdrp(r){ln[ﬁp(r)] =1L (41)

061133-4
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where A = [hlﬁﬂnm)]m, Thermodynamics enters by real-
izing that Fr[po] 1s the “intrinsic” Helmholtz free energy of
the system such that the total free energy is the sum of internal
and external contributions,

Filool + f drpo(EY(D). 42)

V. TWO-STAGE MINIMIZATION

The essence of th@iderivation presented in Sec. IV is a
double minimization of the grand potential functional (4) of
the many-body distribution. In the following, we spell this out
more explicitly. From Sec. II we know that

Qo =minTry f(Hy — uN + 7' 1n f). (43)
f
We decompose the right-hand side into a double minimization

Qy = min min Try f(Hy — uN + 87 '1n f), (44)
e fop

where the inner minimization is a search under the contraint
the f generates p [via relationship (23)]. For Hamiltonians of
the form (12) the above can be written as

€20 = min min Try f
o fp

2m

i=1 i=1

N s N
x [ Pi +U+Zu(r,-)—,uN+ﬁ_] lllj},
(45)
In the expression above

b2
Tra f [Z v(r,-)—uN} = f rlu(r) — ] p(r).  (46)

i=1

because f — p. So we may rewrite (45) as

[
€y = min fdr[u(r) — p] p(r)
r
N 1'?-1
+ }n_i}; Tro f (; St U+ B 'n f) ] (47

Q= mpiﬂ If drlu(r) — ] p(r) + }_L[p]} , (48)

where F;[p] is given by (22). Clearly (48) is equivalent to
(25) and (26).

VI. DFT IN THE CANONICAL ENSEMBLE

One benefit of Levy’s method is that it allows straight-
forward ger ization to the canonical ensemble, as we
demonstrate 1n the following. In the canonical ensemble (i.e.
for fixed number of particles, N) the equilibrium many-body
distribution functions is

fvo=Z; " exp(—BHy), (49)

where the canonical partition sum is

Zy = Tryexp(—BHy), (50)
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with the canonical trace

Tl'_fv=ijfdr|“‘dr,vfdp|‘“dp”, (51)
WY NI
In analogy to (4) we define the functional

Flfyl=Try fy(Hy + " In fy), (52)

where fu is arbitrary N-body distribution that satisfies
Try fy = 1. It 1s easy to show that the (total) Helmholtz

free energy Fy = —p 'InZ, is obtained by inserting the
equilibrium distribution (49) into the functional (52), hence
Fo = Flfnol (53)

Reasoning based on the Gibbs-Bogoliubov inequality, com-
pletely analogous to the arguments presented in Sec. II, yields

Fy = min F[ fy]. (54)
Iy
We decompose this into a double minimization

Fy=min min F[fy], (55)
L

N fv—py
where the canonical one-body density distribution that is
generated by f is
pn(r) = Try fyp(r), (56)

with the density operator g(r) defined by (14). Clearly the
density defined in this way satisfies fdrp_m(r) = N, and
there are no fluctuations in the total number of particles. For
Hamiltonians of the form (12), Eq. (55) becomes

Fo = min min Try fy
o ey

gt

In the above expression

a N
p; o
St U+ > v+ p ' n jh} . (57)

i=1

N

Tryfy ) o) = f dro(r)py (r), (58)

i=1

because fy — py via (56). Hence

Fy = min [f drv(r)py(r)+ min Try fy
o fv—py

N9
x( £+U+ﬁ_]ln‘f_~)}, (59)

2m

i=l

which we write as
Fy = min If dru(r)py(r) + Fm[m-]} , (60)
£n

w!crc the intrinsic Helmholtz free-energy functional in the
canonical ensemble is defined as

N
Fylpy]l = min Try fy
vl Ty v In (E

which is formally equivalent to the definition (22) of F; in the
grand ensemble on identifying the different traces and different

2
Pl L u+ B 'In ‘f'_@.) . (61)
2m

061133-5
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types of many-body distributions. It is clear that the densia

distribution py o that minimizes the right-hand side of (60) is
the true equilibrium distribution in the canonical ensemble

Py o(r) = Try fyop(r) (62)

and that Fy = Fy[py_ol. The variational principle (60) implies
that

SFylpn
SExlonI| ey =0, 63)
dpn(r) |,
where the derivative is taken under the constraint
[drpy(r)=N.

VII. DISCUSSION AND CONCLUSION

The fbrmulalionﬂ)l:'l‘ rests on the existence and unique-
ness of the intrinsic free energy as a functional of the one-body
density for a given classical system. We have described two
methods for defining this quantity, via Eq. (15) based on the
Mermin-Evans argument [2,7] and via (22) based on Levy’s
constrained search [11]. Following the derivations presented
in Secs. IIT and IV, it 1s clear that these methods differ in their
procedures and underlying principles.

In the Mermin-Evans sequence of arguments it is formally
proven that@he equilibrium many-body probability distribu-
tion, fj, is a functional of the equilibrium one-body density,
po. The existence of this functional rests on a sequence of
functional dependencies. For given interatomic potential U
and given one-body density p, there is a unique external

tential v that generates this p. When input into the form
of the many-body distribution ir grand ensemble (1), this
uniquely determines fas used on the right-hand side of the
definition (15) of the intrinsic frec-cnem functional F[p].
This chain of dependency is implicit in order to properly
define the free-energy functional via (15). Note that the naive
view that the equilibrium probability distribution, f, is a
function of the external potential, v, such that (15) should
also depend on v gives the impression that functional (15) is
not independent of the external potential energy. Certainly this
is not the case, as one may recall the argument above (15).

On the other hand, Levy’s method does not rely on the above
rather subtle argument. An appealing feature of the constrained

PHYSICAL REVIEW E 83, 061133 (2011)

'ch method is the definition (22) of ; [ p]. Here the intrinsic

free-energy functional is explicitly independent of the external
potential, which is not as easily observed from F[p] of
Eq. (15). Kohn [13] and Levy [18] describe the constrained
search method as a two-step minimization procedure, and we
have laid out analogous reasoning in Sec. V.

The underl) principle of the Mermin-Evans method
of defining the intrinsic free-energy functional is
v-representability of the trial density, whereas Levy’s func-
tional is based on the weaker condition of f-representability.
However, one may restrict the constrained search to the class of
one-body densities that is v-representable. In this case Levy’s
functional (22) becomes equal to the Mermin-Evans functional
(15). Hence, the constrained search method reduces to finding
the equilibrium one-body density which correspond to an
(equilibrium) external potential, v, that minimizes functional
(24) over all one-body densities, p, each associated to a
specific v. Furthermore, applying the Legendre transform on
functional (24) and minimizing a set of external potentials
that yields a fixed one-body density, gives Week's free-energy
functional [19].

In practice, minimizing Levy’s version of the free-energy
functional (22) will certainly not be easier than solving the
many-body problem itself. Hence, whether the definition (22
helps to construct approximations for grand-c: ical free-
energy functionals remains an open question. For the case
of the canonical ensemble we point the reader to the very
significant body of work that has been carried out to formulate
a computational scheme that permits to capture the effects
that arise due to the constraint of fixed number of particles
[21-26]. While the generalization to equilibrium mixtures is
straightforward, we expect the application of Levy’s method
to DFT for quenched-annealed mixtures [28-31] to constitute
an interesting topic for future work.
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